重新索引會(huì)更改DataFrame的行標(biāo)簽和列標(biāo)簽。重新索引意味著符合數(shù)據(jù)以匹配特定軸上的一組給定的標(biāo)簽。
可以通過索引來實(shí)現(xiàn)多個(gè)操作 -
示例
import pandas as pd
import numpy as np
N=20
df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
})
#reindex the DataFrame
df_reindexed = df.reindex(index=[0,2,5], columns=['A', 'C', 'B'])
print (df_reindexed)
執(zhí)行上面示例代碼,得到以下結(jié)果 -
A C B
0 2016-01-01 Low NaN
2 2016-01-03 High NaN
5 2016-01-06 Low NaN
有時(shí)可能希望采取一個(gè)對象和重新索引,其軸被標(biāo)記為與另一個(gè)對象相同。 考慮下面的例子來理解這一點(diǎn)。
示例
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(10,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(7,3),columns=['col1','col2','col3'])
df1 = df1.reindex_like(df2)
print df1
執(zhí)行上面示例代碼,得到以下結(jié)果 -
col1 col2 col3
0 -2.467652 -1.211687 -0.391761
1 -0.287396 0.522350 0.562512
2 -0.255409 -0.483250 1.866258
3 -1.150467 -0.646493 -0.222462
4 0.152768 -2.056643 1.877233
5 -1.155997 1.528719 -1.343719
6 -1.015606 -1.245936 -0.295275
注意 - 在這里,
df1數(shù)據(jù)幀(DataFrame)被更改并重新編號(hào),如df2。 列名稱應(yīng)該匹配,否則將為整個(gè)列標(biāo)簽添加NAN。
reindex()采用可選參數(shù)方法,它是一個(gè)填充方法,其值如下:
pad/ffill - 向前填充值bfill/backfill - 向后填充值nearest - 從最近的索引值填充示例
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3'])
# Padding NAN's
print df2.reindex_like(df1)
# Now Fill the NAN's with preceding Values
print ("Data Frame with Forward Fill:")
print df2.reindex_like(df1,method='ffill')
執(zhí)行上面示例代碼時(shí),得到以下結(jié)果 -
col1 col2 col3
0 1.311620 -0.707176 0.599863
1 -0.423455 -0.700265 1.133371
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
Data Frame with Forward Fill:
col1 col2 col3
0 1.311620 -0.707176 0.599863
1 -0.423455 -0.700265 1.133371
2 -0.423455 -0.700265 1.133371
3 -0.423455 -0.700265 1.133371
4 -0.423455 -0.700265 1.133371
5 -0.423455 -0.700265 1.133371
注 - 最后四行被填充了。
限制參數(shù)在重建索引時(shí)提供對填充的額外控制。限制指定連續(xù)匹配的最大計(jì)數(shù)??紤]下面的例子來理解這個(gè)概念 -
示例
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3'])
# Padding NAN's
print df2.reindex_like(df1)
# Now Fill the NAN's with preceding Values
print ("Data Frame with Forward Fill limiting to 1:")
print df2.reindex_like(df1,method='ffill',limit=1)
在執(zhí)行上面示例代碼時(shí),得到以下結(jié)果 -
col1 col2 col3
0 0.247784 2.128727 0.702576
1 -0.055713 -0.021732 -0.174577
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
Data Frame with Forward Fill limiting to 1:
col1 col2 col3
0 0.247784 2.128727 0.702576
1 -0.055713 -0.021732 -0.174577
2 -0.055713 -0.021732 -0.174577
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
注意 - 只有第
7行由前6行填充。 然后,其它行按原樣保留。
rename()方法允許基于一些映射(字典或者系列)或任意函數(shù)來重新標(biāo)記一個(gè)軸。
看看下面的例子來理解這一概念。
示例
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
print df1
print ("After renaming the rows and columns:")
print df1.rename(columns={'col1' : 'c1', 'col2' : 'c2'},
index = {0 : 'apple', 1 : 'banana', 2 : 'durian'})
執(zhí)行上面示例代碼,得到以下結(jié)果 -
col1 col2 col3
0 0.486791 0.105759 1.540122
1 -0.990237 1.007885 -0.217896
2 -0.483855 -1.645027 -1.194113
3 -0.122316 0.566277 -0.366028
4 -0.231524 -0.721172 -0.112007
5 0.438810 0.000225 0.435479
After renaming the rows and columns:
c1 c2 col3
apple 0.486791 0.105759 1.540122
banana -0.990237 1.007885 -0.217896
durian -0.483855 -1.645027 -1.194113
3 -0.122316 0.566277 -0.366028
4 -0.231524 -0.721172 -0.112007
5 0.438810 0.000225 0.435479
rename()方法提供了一個(gè)inplace命名參數(shù),默認(rèn)為False并復(fù)制底層數(shù)據(jù)。 指定傳遞inplace = True則表示將數(shù)據(jù)重命名。