堆排序是另外一種常用的遞歸排序。因?yàn)槎雅判蛴兄鴥?yōu)秀的排序性能,所以在軟件設(shè)計(jì)中也經(jīng)常使用。堆排序有著屬于自己的特殊性質(zhì),和二叉平衡樹(shù)基本是一致的。打一個(gè)比方說(shuō),處于大堆中的每一個(gè)數(shù)據(jù)都必須滿足這樣一個(gè)特性:
(1)每一個(gè)array[n] 不小于array[2*n]
(2)每一個(gè)array[n]不小于array[2 * n + 1]
構(gòu)建這樣一個(gè)堆只是基礎(chǔ),后面我們需要每次從堆的頂部拿掉一個(gè)數(shù)據(jù),不斷調(diào)整堆,直到這個(gè)數(shù)組變成有序數(shù)組為主。所以詳細(xì)的堆排序算法應(yīng)該是這樣的:
1)構(gòu)建大堆,使得堆中的每一個(gè)數(shù)據(jù)都滿足上面提到的性質(zhì)
2)將堆的第一個(gè)數(shù)據(jù)和堆的最后一個(gè)數(shù)據(jù)進(jìn)行互換,然后重新調(diào)整堆,直到堆重新平衡為止
3)重復(fù)2)的過(guò)程,直到整個(gè)數(shù)組有序。
上面的描述過(guò)程很簡(jiǎn)單,那么實(shí)踐操作是怎么樣的呢?
a)對(duì)入?yún)⑦M(jìn)行判斷
void heap_sort(int array[], int length)
{
if(NULL == array || 0 == length)
return ;
/* to make sure data starts at number 1 */
_heap_sort(array-1, length);
}
**b)構(gòu)建大堆和調(diào)整大堆**
void _heap_sort(int array[], int length)
{
int index = 0;
int median = 0;
construct_big_heap(array, length);
for(index = length; index > 1; index --)
{
median = array[1];
array[1] = array[index];
array[index] = median;
reconstruct_heap(array, 1, index-1);
}
}
c)構(gòu)建大堆的細(xì)節(jié)操作部分
void set_sorted_value(int array[], int length)
{
int index = length;
int median = 0;
if(length == 1) return;
while(index > 1){
if(array[index >> 1] >= array[index])
break;
median = array[index];
array[index] = array[index >> 1];
array[index >> 1] = median;
index >>= 1;
}
}
void construct_big_heap(int array[], int length)
{
int index = 0 ;
for(index = 1; index <= length; index ++)
{
set_sorted_value(array, index);
}
}
d)大堆迭代調(diào)整
void reconstruct_heap(int array[], int index, int length)
{
int swap = 0;
if(length < index << 1)
return;
if(length == index << 1){
adjust_leaf_position(array, index);
return;
}
if(-1 != (swap = adjust_normal_position(array, index))){
reconstruct_heap(array, swap, length);
}
}
e)對(duì)單分支節(jié)點(diǎn)和滿分支節(jié)點(diǎn)分別處理
int adjust_normal_position(int array[], int index)
{
int left = index << 1 ;
int right = left + 1;
int median = 0;
int swap = 0;
if(array[index] >= array[left]){
if(array[index] >= array[right]){
return -1;
}else{
swap = right;
}
}else{
if(array[index] >= array[right]){
swap = left;
}else{
swap = array[left] > array[right] ? left : right;
}
}
if(swap == left) {
median = array[index];
array[index] = array[left];
array[left] = median;
}else{
median = array[index];
array[index] = array[right];
array[right] = median;
}
return swap;
}
STATUS adjust_leaf_position(int array[], int index)
{
int median = 0;
if(array[index] > array[index << 1])
return TRUE;
median = array[index];
array[index] = array[index << 1];
array[index << 1] = median;
return FALSE;
}
f)堆排序算法介紹完畢,創(chuàng)建測(cè)試用例驗(yàn)證
static void test1()
{
int array[] = {1};
heap_sort(array, sizeof(array)/sizeof(int));
}
static void test2()
{
int array[] = {2, 1};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(2 == array[1]);
}
static void test3()
{
int array[] = {3, 2, 1};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(2 == array[1]);
assert(3 == array[2]);
}
static void test4()
{
int array[] = {2, 3, 1};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(2 == array[1]);
assert(3 == array[2]);
}
static void test5()
{
int array[] = {5,3, 4, 1};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(3 == array[1]);
assert(4 == array[2]);
assert(5 == array[3]);
}
static void test6()
{
int array[] = {2, 3,6, 8, 7};
heap_sort(array, sizeof(array)/sizeof(int));
assert(2 == array[0]);
assert(3 == array[1]);
assert(6 == array[2]);
assert(7 == array[3]);
assert(8 == array[4]);
}
static void test7()
{
int array[] = {3,4,2,7,1,9,8,6,5};
heap_sort(array, sizeof(array)/sizeof(int));
assert(1 == array[0]);
assert(2 == array[1]);
assert(3 == array[2]);
assert(4 == array[3]);
assert(5 == array[4]);
assert(6 == array[5]);
assert(7 == array[6]);
assert(8 == array[7]);
assert(9 == array[8]);
}