在线观看不卡亚洲电影_亚洲妓女99综合网_91青青青亚洲娱乐在线观看_日韩无码高清综合久久

鍍金池/ 教程/ Python/ 標記單詞
文本翻譯
提取URL地址
處理PDF
塊分類
搜索和匹配
大寫轉換
提取電子郵件地址
字符串的不變性
文本處理狀態(tài)機
雙字母組
閱讀RSS提要
單詞替換
WordNet接口
重新格式化段落
標記單詞
向后讀取文件
塊和裂口
美化打印數(shù)字
拼寫檢查
將二進制轉換為ASCII
文本分類
文字換行
頻率分布
字符串作為文件
約束搜索
詞干算法
符號化
同義詞和反義詞
過濾重復的字詞
刪除停用詞
Python文本處理教程
文字摘要
段落計數(shù)令牌
語料訪問
文字改寫
文本處理簡介
處理Word文檔
Python文本處理開發(fā)環(huán)境
排序行

標記單詞

標記是文本處理的基本特征,我們將單詞標記為語法分類。借助tokenizationpos_tag函數(shù)來為每個單詞創(chuàng)建標簽。

import nltk

text = nltk.word_tokenize("A Python is a serpent which eats eggs from the nest")
tagged_text=nltk.pos_tag(text)
print(tagged_text)

執(zhí)行上面示例代碼,得到以下結果 -

[('A', 'DT'), ('Python', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('serpent', 'NN'), 
('which', 'WDT'), ('eats', 'VBZ'), ('eggs', 'NNS'), ('from', 'IN'), 
('the', 'DT'), ('nest', 'JJS')]

標簽說明

可以使用以下顯示內置值的程序來描述每個標記的含義。

import nltk

nltk.help.upenn_tagset('NN')
nltk.help.upenn_tagset('IN')
nltk.help.upenn_tagset('DT')

當運行上面的程序時,我們得到以下輸出 -

NN: noun, common, singular or mass
    common-carrier cabbage knuckle-duster Casino afghan shed thermostat
    investment slide humour falloff slick wind hyena override subhumanity
    machinist ...
IN: preposition or conjunction, subordinating
    astride among uppon whether out inside pro despite on by throughout
    below within for towards near behind atop around if like until below
    next into if beside ...
DT: determiner
    all an another any both del each either every half la many much nary
    neither no some such that the them these this those

標記語料庫

還可以標記語料庫數(shù)據(jù)并查看該語料庫中每個單詞的標記結果。參考以下實現(xiàn)代碼 -

import nltk

from nltk.tokenize import sent_tokenize
from nltk.corpus import gutenberg
sample = gutenberg.raw("blake-poems.txt")
tokenized = sent_tokenize(sample)
for i in tokenized[:2]:
            words = nltk.word_tokenize(i)
            tagged = nltk.pos_tag(words)
            print(tagged)

執(zhí)行上面示例代碼,得到以下結果 -

[([', 'JJ'), (Poems', 'NNP'), (by', 'IN'), (William', 'NNP'), (Blake', 'NNP'), (1789', 'CD'), 
(]', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (AND', 'NNP'), (OF', 'NNP'), 
(EXPERIENCE', 'NNP'), (and', 'CC'), (THE', 'NNP'), (BOOK', 'NNP'), (of', 'IN'), 
(THEL', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (INTRODUCTION', 'NNP'), 
(Piping', 'VBG'), (down', 'RP'), (the', 'DT'), (valleys', 'NN'), (wild', 'JJ'), 
(,', ','), (Piping', 'NNP'), (songs', 'NNS'), (of', 'IN'), (pleasant', 'JJ'), (glee', 'NN'),
 (,', ','), (On', 'IN'), (a', 'DT'), (cloud', 'NN'), (I', 'PRP'), (saw', 'VBD'), 
 (a', 'DT'), (child', 'NN'), (,', ','), (And', 'CC'), (he', 'PRP'), (laughing', 'VBG'), 
 (said', 'VBD'), (to', 'TO'), (me', 'PRP'), (:', ':'), (``', '``'), (Pipe', 'VB'),
 (a', 'DT'), (song', 'NN'), (about', 'IN'), (a', 'DT'), (Lamb', 'NN'), (!', '.'), (u"''", "''")]

上一篇:搜索和匹配下一篇:文字摘要