參照鏈接描述
在zeppelin容器提供的網(wǎng)頁(yè)筆記本中運(yùn)行教程代碼。
導(dǎo)入本地文件:
val bankText = sc.textFile("D:/Projects/Zeppelin/bank/bank-full.csv")
case class Bank(age:Integer, job:String, marital : String, education : String, balance : Integer)
// split each line, filter out header (starts with "age"), and map it into Bank case class
// 分行,過(guò)濾出首行,然后映射到Bank
val bank = bankText.map(s=>s.split(";")).filter(s=>s(0)!="\"age\"").map(
s=>Bank(s(0).toInt,
s(1).replaceAll("\"", ""),
s(2).replaceAll("\"", ""),
s(3).replaceAll("\"", ""),
s(5).replaceAll("\"", "").toInt
)
)
// convert to DataFrame and create temporal table
// 轉(zhuǎn)換到DataFrame,然后創(chuàng)建臨時(shí)表
bank.toDF().registerTempTable("bank")
運(yùn)行SQL:
%sql select age, count(1) from bank where age < 30 group by age order by age
報(bào)錯(cuò):
java.io.IOException: No FileSystem for scheme: D
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2584)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2591)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:91)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2630)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2612)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:370)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:296)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:256)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:202)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.ShuffleDependency.<init>(Dependency.scala:91)
at org.apache.spark.sql.execution.exchange.ShuffleExchange$.prepareShuffleDependency(ShuffleExchange.scala:261)
at org.apache.spark.sql.execution.exchange.ShuffleExchange.prepareShuffleDependency(ShuffleExchange.scala:84)
at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute$1.apply(ShuffleExchange.scala:121)
at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute$1.apply(ShuffleExchange.scala:112)
at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
at org.apache.spark.sql.execution.exchange.ShuffleExchange.doExecute(ShuffleExchange.scala:112)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113)
at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:235)
at org.apache.spark.sql.execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:141)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:368)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113)
at org.apache.spark.sql.execution.TakeOrderedAndProjectExec.executeCollect(limit.scala:133)
at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2327)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:235)
at org.apache.zeppelin.spark.SparkSqlInterpreter.interpret(SparkSqlInterpreter.java:130)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:97)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:498)
at org.apache.zeppelin.scheduler.Job.run(Job.java:175)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:139)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)北大青鳥(niǎo)APTECH成立于1999年。依托北京大學(xué)優(yōu)質(zhì)雄厚的教育資源和背景,秉承“教育改變生活”的發(fā)展理念,致力于培養(yǎng)中國(guó)IT技能型緊缺人才,是大數(shù)據(jù)專業(yè)的國(guó)家
達(dá)內(nèi)教育集團(tuán)成立于2002年,是一家由留學(xué)海歸創(chuàng)辦的高端職業(yè)教育培訓(xùn)機(jī)構(gòu),是中國(guó)一站式人才培養(yǎng)平臺(tái)、一站式人才輸送平臺(tái)。2014年4月3日在美國(guó)成功上市,融資1
北大課工場(chǎng)是北京大學(xué)校辦產(chǎn)業(yè)為響應(yīng)國(guó)家深化產(chǎn)教融合/校企合作的政策,積極推進(jìn)“中國(guó)制造2025”,實(shí)現(xiàn)中華民族偉大復(fù)興的升級(jí)產(chǎn)業(yè)鏈。利用北京大學(xué)優(yōu)質(zhì)教育資源及背
博為峰,中國(guó)職業(yè)人才培訓(xùn)領(lǐng)域的先行者
曾工作于聯(lián)想擔(dān)任系統(tǒng)開(kāi)發(fā)工程師,曾在博彥科技股份有限公司擔(dān)任項(xiàng)目經(jīng)理從事移動(dòng)互聯(lián)網(wǎng)管理及研發(fā)工作,曾創(chuàng)辦藍(lán)懿科技有限責(zé)任公司從事總經(jīng)理職務(wù)負(fù)責(zé)iOS教學(xué)及管理工作。
浪潮集團(tuán)項(xiàng)目經(jīng)理。精通Java與.NET 技術(shù), 熟練的跨平臺(tái)面向?qū)ο箝_(kāi)發(fā)經(jīng)驗(yàn),技術(shù)功底深厚。 授課風(fēng)格 授課風(fēng)格清新自然、條理清晰、主次分明、重點(diǎn)難點(diǎn)突出、引人入勝。
精通HTML5和CSS3;Javascript及主流js庫(kù),具有快速界面開(kāi)發(fā)的能力,對(duì)瀏覽器兼容性、前端性能優(yōu)化等有深入理解。精通網(wǎng)頁(yè)制作和網(wǎng)頁(yè)游戲開(kāi)發(fā)。
具有10 年的Java 企業(yè)應(yīng)用開(kāi)發(fā)經(jīng)驗(yàn)。曾經(jīng)歷任德國(guó)Software AG 技術(shù)顧問(wèn),美國(guó)Dachieve 系統(tǒng)架構(gòu)師,美國(guó)AngelEngineers Inc. 系統(tǒng)架構(gòu)師。